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HYDRODYNAMIC STABILITY OF A CYLINDRICAL REACTION FRONT 

ASSOCIATED WITH A STRONG INCREASE OF VISCOSITY 

G. V. Zhizhin and A. S. Segal' UDC 532.542:660.095.26 

Hydrodynamic stability of a plane chemical reaction front in a gas was first considered 
in [i] neglecting transport effects. The effect of transport processes on the stability of a 
plane front in viscous gases and in condensed phases was studied in [2-5]. The stability of 
a curved front was considered in [6] for the example of the propagation of a spherical flame 
in a gas at rest. Transport effects were assumed to be small in this case and were taken 
into account phenomenologically in the Markstein approximation [7]. 

In the present paper we consider, in the linear approximation, the hydrodynamic stability 
of a stationary cylindrical reaction front in a radial, axisymmetric flow of a condensed 
medium. The flow is generated with the help of two coaxial, permeable, cylindrical surfaces. 
It is assumed that the viscosity of the medium is significantly increased by the reaction 
process (this is typical of polymerization reactions, for example) and hence inertial effects 
are small and are not taken into account [8, 9]. We study the dependence of the perturbation 
increment of the stationary states of the front on the parameters of the problem: the ratio 
of the viscosities of the medium on the front, the ratios of the radii of the boundary sur- 
faces to the radius of the front, and the resistances of the order approximation in the 
(small) ratio of the viscosities this dependence is obtained analytically. It is shown that 
the front is absolutely stable in nearly the entire physical region of the parameter space. 
The front becomes unstable only when it approaches the outer boundary surface and the surface 
has a small resistance. 

We note that it was found in a number of papers (see [8-12], for example) that for 
channel flow of a reacting medium, whose viscosity increases in the process of the reaction, 
the reaction front is sharply curved and drawn out near the channel axis (the "rupture" 
phenomenon). Our study of the hydrodynamic stability of a cylindrical front shows that small 
distortions of the front are damped for a wide range of the parameters and hence a "rupture" 
in the radial direction does not occur. 

I. We assume the thickness of the front to be small compared to the distance between 
the surfaces bounding the flow and therefore treat it as a surface of discontinuity propaga- 
ting with a constant velocity U with respect to the reactions medium (the local Michelson law 
[13]). The density of the medium is taken to be constant. 

With these assumptions, the motion of the medium in front of and behind the front is 
described by the equation of continuity and the Stokes equation 

VPJ,2 ~ ~l,2V~Y1,2; (i.I) 

v.V1,2 = O, ( 1 . 2 )  

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 
pp. 62-71, March-April, 1988. Original article submitted December 22, 1986. 
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where p is the pressure, # is the viscosity, V is the velocity vector, and the subscripts I 
and 2 refer to the flow regions in front of and behind the front. 

Boundary conditions to the system of equations (I.i) and (1.2) are imposed on the pene- 
trable surfaces bounding the flow, and on the front. Since inertial effects are small, we 
assume that the normal component of the velocity on the penetrable surfaces is proportional 
to the pressure drop across them 

(plo - -  Pl)1~1 = a lVa .  JR1; ( 1 . 3 )  

(P~ - -  P2o) IR~ --- o2V2n [R 2. (1.4) 

Here al, 2 are proportionality constants (the resistances of the surfaces) and RI, 2 are the 
radii of the surfaces. The subscript 0 refers to the flow regions outside the penetrable 
surfaces. The tangential components of the velocity on the boundary surfaces are assumed to 
be equal to zero: 

V,~la~ = O; ( 1 . 5 )  

Vaz[n 2 = O. ( 1 . 6 )  

On the reaction front, in view of the "cohesion" of the flow and the incompressibility 
of the medium, the velocity vector is continuous 

Vl] a = V2TR, ( 1 . 7 )  

where R is the surface of the front, and is given by the equation R(r, t) = 0, where r is the 
radius vector and t is the time. 

Conservation of momentum on the surface of discontinuity [14], and the continuity of the 
velocity vector imply the continuity of the stress vector 

P~IrR = P~2[R- (I. 8) 

where Pn = P'n, P is the stress tensor, n = 7R/IVR I is unit normal to the front in the direc- 
tion of its propagation. 

The condition that the propagation velocity of the front be constant with respect to the 
reacting medium is written in the form [14] 

N - -  VnlR = U (1.9) 

(N = -(0R/0t)/IVR I is the propagation velocity of the surface of the front along the direction 
of the normal). 

Equations (i.I) and (1.2) with the boundary conditions (1.3)-(1.9) give a closed formula- 
tion of the problem. It is significant that the time derivative appears explicitly only in 
the boundary condition (1.9). This is because the problem is quasistationary, in view of the 
smallness of inertial effects: the front propagates in a given velocity field with a constant 
relative velocity U, and the velocity and pressure fields adjust themselves instantaneously 
to the changing position of the front. 
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2. We consider the stationary states of the front and their stability to one-dimensional 
perturbations which do not distort the cylindrical shape of the front. Introducing cylindri- 
cal coordinates (r, ~, z), ~here the z axis is along the flow axis, and putting 0/a T = ~/az 
=0, vl, 2= wl, 2 = 0, we find from (1.2) and (1.7) 

u 1 = u~ = q/2~r,: ( 2 . 1 )  

wb.ere u,  v ,  w a r e  t he  r a d i a l ,  a n g u l a r ,  and a x i a l  components  o f  t he  v e l o c i t y  v e c t o r  V, r e s p e c -  
t i v e l y ,  and q i s  a c o n s t a n t  o f  i n t e g r a t i o n ,  which  can  be i n t e r p r e t e d  as  an a x i s y m m e t r i c  
h y d r o d y n a m i c a l  s o u r c e .  

S u b s t i t u t i n g  ( 2 . 1 )  i n t o  ( 1 . 1 )  and ( 1 . 8 ) ,  we f i n d  t h a t  t he  p r e s s u r e  i s  c o n s t a n t  i n  the  
f low r e g i o n s  i n  f r o n t  o f  and b e h i n d  t he  f r o n t ,  w h i l e  a c r o s s  the  f r o n t  t h e r e  i s  a p r e s s u r e  
jump, due t o  t h e  change  i n  t he  v i s c o s i t y  

P I - - P ~  = ( ~  ~ l )q /aR  2. ( 2 . 2 )  

This  r e l a t i o n  can  be i n t e r p r e t e d  as  t he  r e s u l t  o f  an i n t r i n s i c  h y d r a u l i c  r e s i s t a n c e  o f  t he  
f r o n t ,  which  depends  on t h e  r a d i u s  o f  t he  f r o n t  [ 1 5 ] .  

The M i c h e l s o n  law ( 1 . 9 )  i n  t h i s  c a s e  has  t he  form 

d R / d t  = u (R)  - -  U ( 2 . 3 )  

(u(R) is the local value of the flow velocity at the location of the front). The stationary 
states of the front are determined by the equation u(R) = U (dR /dt = 0). According to (2.1) in 
the case considered here flow velocity at a fixed point is uniquely related to the source and 
therefore the stationary states of the front and their stability to one-dimensional perturba- 
tions, which do not distort the shape of the front and flow, depend significantly on how the 
reacting medium is fed into the system [15]. 

If material is supplied at a constant rate q, then u(R) = q/2~R is a monotonically 
decreasing function (Fig. i, curve I) and the front has a single stationary state (point S) 
determined by the radius 

R ~  (2.4) 

This stationary state is stable to one-dimensional perturbations. Indeed, putting R = R ~ + 
R' into (2.3) (R' is a small perturbation) and linearizing the resulting equation with respect 
to R' we find 

dR' du (R) 
d---F= dR no R ' ,  (2.5) 

and so R' - exp ~t, where 

= - -q /2n (R~  ~. ( 2 . 6  ) 

In the case of a source, q > 0 and therefore w < 0 and the front is stable (for a sink it is 
unstable, on the other hand). 
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If material is supplied in a way such that the pressure drop Ap = P10 - P20 between the 
permeable surfaces is constant, then, putting (2.1) into (1.3) and (1.4), and eliminating Pl, 
P2, and q from the resulting equations and (2.2), we find 

u(R) ---- A p f ( 2 ~ R  -~- ApJR), ~ = ~1/2nR1 + ~/2~R2, (2.7) 
A~ = ~2 -- ~I. 

This dependence (Fig. i, curve 2) is nonmonotonic and has a maximum em ---- AP/4(a~Ag) I/2 at 
R- R m ----(A~/~o)I/2. The nonmonotonic nature of the dependence is due to the fact that on the 
one hand, u(R) should decrease with increasing R because of the increasing distance from the 
axis (see (2.1)), while on the other hand, q should increase because of the decrease in the 
hydraulic resistance of the front (see (2.2)). 

If U > u m the front does not have stationary states: dR/dt < 0 and the front is pulled 
in toward the axis. If U < u m exist two stationary states (the points S I and S 2 in Fig. I), 
which are determined by the radii 

R ~ = (Ap ~ V A p  ~ - -  16o~A~--G) /4~U.  ( 2 . 8 )  

It follows from (2.5) that the first stationary state is unstable to small perturbations of 
t 

the radius of the front, while the second is stable, and /~1,2~ exp ~1,2t, where 

U A ~ - -  ~c~(R ~ "~2 
1.~J (2.9) 

~ R ~ ap~ q- ~o [ R ~ "~ " 
1,2 \ 1 ,2 J  

The critical condition for the vanishing of stationary states is U = u m (where the points S I 
and S 2 collapse into the point S1z of Fig. i). 

When the characteristics of the pump supplying the reacting material are arbitrary, u(R) 
has the same qualitative form as (2.7), and all conclusions on the number and stability of the 
stationary states remain in force [15]. 

3. We consider a small hydrodynamic perturbation of arbitrary norm: 

V = V ~ + V ' ,  p = p ~  + p , ,  R = R ~ + R ' ,  ( 3 . 1 )  

where the superscript 0 denotes the stationary values of the quantities and the prime denotes 
the perturbation. 

Equations (I.i), (1.2), and the boundary conditions (1.3)-(1.6) are linear, therefore 
substitution of (3.1) into these equations leads to equations for the perturbations having 
the same form as the original equations. In particular, (1.3) and (1.4) take the form 

(P;o - -  P l ) I , ,  = ~lul  [.~; ( 3 . 2 )  

- p o)I.. = I... ( 3 . 3 )  
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We estimate the quantities P{0 and P~0 in the region outside the outer boundary surface 
t 2! (as in the region between the surfaces) we have the Stokes equation Vp20 = ~2V V20 for the 

perturbations. From this equation and the continuity of the velocity vector on the permeable 
surfaces we find P20 ~ ~2u20(R2)/A2 (A z is the linear scale of the external region). Comparing 
this estimate with (3.3), we obtain the relation 

? t t 

P2o (R2)/(P2 (R2) - -  P2o (R2)) ~ ~z/~2A2 = / / 2 ,  ( 3 . 4 )  

showing that penetration of the pressure perturbation into the external region is determined 
by the ratio of the quantity ~2/A2 (which can be considered to be the resistance of the 
external region) to the resistance of the boundary surface a 2. The parameter H 2 represents 
the hydraulic analog of the Biot number, which, as is well-known, is the ratio of the thermal 
resistance of a region &/~ to the thermal resistance of its boundary i/a (A is the thermal 
conductivity of the medium and a is the coefficient of heat transfer). 

In general, the flow in the external region always affects the flow in the interior, 
and, in particular, it distorts the stationary states considered in Sec. 2 (an exception is 
the case where the external region is unbounded and the flow is radial and axisymmetric in 
the external region). Estimates analogous to (3.4) for the stationary states show that these 
distortions are also determined by the parameter H 2 in practice, the case of small H z is of 
interest, when the distortions of the stationary states are small (according to (3.4), the 
pressure perturbation in this case is localized in the interior). Then (3.4) can be written 

t R ! in the form P2(2) ~ [I + O(H2)]~2u2(R2) , which shows that the penetration of the pressure 
perturbation into the external region corresponds qualitatively to an increase in the resis- 
tance of the boundary surface by a quantity of order H 2. In the zero-order approximation in 
H2, we have 

p~ (n2) = ~ (n~). ( 3.5 ) 

An analogous discussion leads to the following result for the inner boundary surface 
! ! 

p~ (R~) = -- ~,u, (B~). ( 3 . 6 )  

It will be shown below that an increase of the resistance of the boundary surface can 
only stabilize the front, and therefore if the front is stable on the basis of (3.5) and 
(3.6), it will be even more stable with the use of (3.2) and (3.3). 

We substitute (3.1) into the conditions (1.7)-(1.9) on the front and linearize the 
resulting equation in small perturbations. In linearizing the equation we take into account 
the axial symmetry of the unperturbed flow, and also the relation 

F l a  = (F  ~ + F ' ) IRo+R, = F~ + F '  IRo + V F  ~ JR0.11' + . . . .  ( 3 . 7 )  

where F is an arbitrary hydrodynamical quantity and n' is a small vector determining the 
perturbation the surface of the front. 

After some calculation 

t t 

vll~o = v2 l~o; (3 .8 )  

p~l,o.n o + e ~ l R o . V n , _ 4 ~  UR,nO~,no,~ p~],o.,~o ~ P~[.o-VR' 
, I / ~  I = ' " ( 3 . 9 )  

- -  4 ~ 2 U B ' n O / ( R o ) 2 ;  

OR'/Ot + V t [Ro.n ~ + UB'/R o = 0. ( 3 . 1 0 )  

2 2 0  



t ~ 

We now limit ourselves to the case of angular perturbations (w I = w2 = 0, O/az = 0) and 
transform to dimensionless variables, expressing times, lengths velocities, and pressures in 
terms of R~ R ~ U, and #U/R ~ respectively (the dimensionless variables are denoted by the 
same symbols as their dimensional analogs). We look for the solution of the linearized 
problem in the form 

( u ~ , v , , p l ,  u.,,v2, p2, R ' ) = ( A i ,  B ~ , e - ' C { e ,  Ao_,Be, e C.2, D ) e x p ( - - o ~ t  + ikq~). (3.11) 

Here A~, BI, Cx, A2, B2, and C z are functions of the variable x = In r; ~ = #~/#2; ~ is the 
increment of the perturbations, k is the wave number (an integer), and i is the imaginary 
unit. An arbitrary angular perturbation can be expanded in a series of harmonics given by 
(3 .11) .  

Then the equations for the perturbations reduce to a linear system of differential 
equations with constant coefficients 

A ~ , ~ -  (1 + M - ) A x , ~ -  2ikB~,2 - -  C~,~ - -  C,,.2 = 0; ( 3 . 1 2 )  

t l  

2ikA1,2 + Bx, 2 - -  ( t  + k ~') B1,2 - -  ikC1,2 = O; 

t 

A1, 2 4- A1, ~ 4- ikBL2 = O, 

(3.13) 

( 3 . 1 4 )  

and the boundary conditions are 

B,,2(xl,2) : 0 ;  

(3.15) 

(3.16) 

A~(0) ~--- A2(0); ( 3 . 1 7 )  

B,(o)  - B = ( o ) ;  

8 [C 1 9 ' - -  = (0)  - -  . A 1  (0)  4D] C 2 (0) - -  2,4~ (0)  - -  4D; 

[B 1 (0) - -  B '  1 (0) - -  i kA  1 (0) 4- 4 ikD ] = B, 2 (0 ) - -  32 ( 0 ) -  ilcA 2 (0) 4- 4ikD; 

(3.18) 

(3.19) 

(3.20) 

(o) + i)D - -  A~(O) : 0 

(a prime denotes differentiation with respect to x). 

Integrating the system (3.12)-(3.14), we obtain 

( 3 . 2 1 )  

A1,2 = al,2e zlx + bl,ee Lzx -}.- cl,2e Lax 4- dl,2eL~X; ( 3 . 2 2 )  

kB1,2 = - -  ~ [ a l , j  ~'e~lx + b,,2 (k - -  2) e ~x  - -  cl,gkeXa x d~,2 (k + 2) eX,X]; ( 3 . 2 3 )  

C~,2 = 4 [ba,.~ (k - -  I) e z2~ + dL2 (k + t)  e ~4x] ( 3 . 2 4 )  

( ~ . 1 = - - % 4  = -  (k + t ) ,  ~2 = - - ~ . ~ - - I -  k a r e  t h e  r o o t s  o f  t h e  c h a r a c t e r i s t i c  e q u a t i o n  o f  t h e  
s y s t e m ) .  When k = 1 ( f i r s t  h a r m o n i c )  ~z = A3 = 0 i s  a m u l t i p l e  r o o t  a n d  t h e  s o l u t i o n  o f  t h e  
s y s t e m  i s  

A1.2 = a 1,2e ~ bl,2e -2~ -~ cl, 2 x + d1,2 (3.25) 

�9 "~.~__ "x + , t )  dl ,2] ,  31, 2 = t [3al,2e-. b,.,.e-- c~,2(x -7 -~- (3.26) 

CI.2 -- 8al,2e2~--2cl,2. (3.27) 

Substituting the solution (3.22)-(3.27) into the boundary conditions (3.15)-(3.21), we 
have a system of nine linear homogeneous equations for the coefficients al, bl, ci, dl, a2, 
b 2, c 2, d2, and D. The condition for the existence of a nontrivial solution of the system is 
that the determinant be equal to zero: 

A(F,,,~) = 0, ( 3 . 2 8 )  
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where Fmn is the element of the determinant in the m-th row and n-th column (m = I-9, n = 
i-9): 

F l l  = F21 = R 1  k - l ,  /~'12 = B7 h+l [1 + 4H 1 (k - -  l) /k],  
h--1 FI~=- -F ,~3=B 1 , 

FI4 R k+l = " ' 1  [ l  + 4H~ (k + l)/k],  F2~ = B [  T M  ( k .  2)/k,  

f :4 = - -  B~ +~ (k + 2)/k,  

F35 = F45 = B ~  k - l ,  F36 = R $  T M  [l  - -  4H 2 (k - -  l) /k],  F37 = --FAT = R~-I~ 

F3s = B~ +~ [t - -  4H.~ (k + l ) /k l ,  F46 = R ;  T M  (k - -  2)/k, 

Fa~ = - -  B~ +~ (k + 2)/k,  

F~t = Fs.,~ = F s t  = f~s  ~-- F6t = F67 - -  F :  7 = F78 := F95 = 

---- F~6 = F,~ .-=- F~s = Fg~ = t ,  

F~5 ----- F56 = F57 - -  Fr,8 ----- F63 = F65 == FT. 5 ~= F76 = - - t ,  

FTI = F72 -~" s F73 - -  F74 : - - e ,  

f s~  = Fs~ = e(k -+- t ) / k ,  f s .  ~ - -  f8~ - -  e(k - -  l ) / k ,  

Fs~ = Fss = - - ( k  @ t ) / k ,  F8r = Fs7 = - - ( k  - -  l ) / k ,  

Fs9 --  2(t  -- e), F9.. = --(~o + 1) 

~(e)  - -  (Po + P i e  + P2e2)/(Qo + Qte + Q2s2). 

He re  t h e  c o e f f i c i e n t s  P1, P2, Q1, Q2 d e p e n d  on  t h e  p a r a m e t e r s  R1, R2, 
coefficients P0 and Q0 depend only on R2, Hz, k: 

(the other elements of the determinant are zero). When k = 1 the elements of the determinant 

a r e  F12 = In B 1 - - 2 H 1 ,  F~2 = - - ( l n  B 1 + 1 ) ,  F,6 = lnB~ + 2H2, F46 = - - ( I n B ~  + i ) ,  f ~ 2 - - F ~ 6  = F71 
= F:~ = F74 = F 7 5 =  F : :  = F 7s = Fg0 = 0, F:2 = - - e ,  F76 - - ] .  

4 .  E q u a t i o n  ( 3 . 2 8 )  g i v e s  t h e  d e p e n d e n c e  o f  t h e  i n c r e m e n t  w on t h e  s i x  d i m e n s i o n l e s s  
p a r a m e t e r s :  Rt ,  R2, H1, H2, e ,  k .  E x p a n d i n g  t h e  d e t e r m i n a n t  ( 3 . 2 8 )  b y  r o w s  c o n t a i n i n g  t e r m s  
of order e ,  we obtain 

(4.1) 

HI, H2, k, while the 

Po = [l  + 2 (k  + i )  H2] B~ k - -  [k s - - 4 ( k  ~ - -  2) H2] B ~ + ( 4 . 2 )  

+ 2 (t  + k s) ( l  - -  2H:) - -  k~B;  2 + [i  - -  2 (k - -  t)  H,]  B;2h; 

Q 0 = [ l + 2 ( k +  t )H 2]B~  a + [ k  2 - 4 ( k  2 - 2 )  H d r y +  

+ 2 (1 - -  k s) ( i  - -  2H2) + k2B7 2 + [1 - -  2 (k - -  1) H2] B {  2h. ( 4 . 3 )  

I n  F i g ,  2 ,  i n  t h e  p l a n e  o f  t h e  p a r a m e t e r s  R z a n d  H2 -1, we h a v e  p l o t t e d  s o l i d  a n d  d a s h e d  
curves for which P0 a nd Q0 are zero, respectively (the numbers next to the curves denote the 
number of the harmonic). It is evident that in the physical region of the parameters (R a > 
I, H 2 > 0) Q0 is never equal to zero and hence the small parameter e appears in (i.i) as a 
regular perturbation. In the zero-order approximation in e the increment w depends only on 
the parameters with subscript 2, and therefore the stability of the front is determined, to 
within terms of order e, by the characteristics of the flow behind the front. 

The regularity of the solution with respect to e is due to the fact that in the linear 
approximation in small perturbations the difference between the velocities of the flow and 
the front is compensated by the change in the distance of the front from the source, and 
there is no turning of the front (in the linearized Michelson law (3.10) the derivatives 
OR'~0% ~R'/az) do not occur). In this approximation the front is oriented normally to the 
streamlines, and the velocity perturbations and their gradients are of order unity in the 
entire flow region (in dimensionless variables). The condition that the stresses be equal on 
the front implies that the stress perturbations on the front are of order e. 

It is well known that for channel flow in the presence of a reaction front, accompanied 
by a strong increase in the viscosity, the small parameter e appears in the solution as a 
singular perturbation [i0]. In this case the difference between the flow and front velocities 
is "cancelled" by the turning of the front by an angle such that the components of the two 
velocities along the normal to the front are equal. The front orients itself at a small 
angle to the streamlines and the velocity and its gradient are of order unity only in the 
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flow region behind the front. It is significant that the stress on the front is also of 
order unity in this case. From the condition that the stresses on the front be equal it 
follows that the velocity gradient in the region before the front is of order i/~, which 
leads to a singularity. 

The dependence of the increment on the different parameters was studied numerically. 
Figure 3 shows the dependence ~(~) for R 1 = 0.28. R 2 = 1.5, H I = H 2 ~ 0.01 (the numbers near 
the curves denote the number of the harmonic k). It is evident that ~ > 0 for all harmonics 
for any value of ~ and the front is stable. As the viscosity of the product decreases (E 
increases) the rate of damping of the perturbations increases. When the viscosities of the 
product and initial mixture are equal (~ = i) perturbations of all wavelengths damp out at 
the same rate (there is no dispersion). This is because perturbations of the shape of the 
front do not lead to perturbation of the hydrodynamic fields. 

In the case of polymerization the viscosity of the product is 4-6 orders of magnitude 
larger than the viscosity of the original mixture, and therefore we can limit ourselves to 
the zero-order approximation in ~ in (4.1). In this approximation the solid curves in Fig. 2 
correspond to ~ = 0, while the dashed curves correspond to ~-i = 0 and divide the plane of the 
parameters into regions constant in sign. For a given value of k, the coefficient P0 > 0 in 
the region lying above the k-th solid curve, while Q0 > 0 in the region below the k-th dashed 
curve. The region of instability of the k-th harmonic (~ < 0) is therefore confined between 
the corresponding solid and dashed curves. It is evident that in the physical region of the 
parameters the front is unstable in a strip bounded by the straight lines H2 -I = 0, H2 -I = 2. 
Here the first harmonic is unstable. The higher harmonics lose stability in small parts of 
the band bounded above by the corresponding solid curves. These parts of the band correspond 
to the parameter R 2. 

Being close to unity, and therefore the front is close to the outer boundary surface. 
Hence the front loses stability only when the resistance of the outer boundary surface is 
small. This result has a simple physical interpretation. Neglecting inertial effects, the 
stability of the front in the linear approximation in small perturbations is determined by 
the ratio of the local flow velocity at the location of the perturbed front to its intrinsic 
propagation velocity. When the front is displaced from the stationary position in the direc- 
tion away from the axis, the flow velocity at the new position has a tendency to decrease on 
account of, the increase in the distance from the source, on the one hand, but has a tendency 
to increase on account of the decrease in the effective resistance of the front due to the 
increase of its radius, on the other (see (2.2)). If the resistance of the outer boundary 
surface is large in comparison with the resistance of the front (H 2 << I) then the second 
tendency is suppressed and the front is stable. As the resistance decreases the second 
tendency begins to dominate and the front loses stability (analogous conclusions can be made 
for the case when the front is displaced toward the axis). 

An example of the dependence of the increment ~ on R 2 or different values of k (the 
numbers labeling the curves) in the instability region of the front (H 2 = I) is given in Fig. 
4a, and in the region of absolute stability (H 2 = 10 -4 ) in Fig. 4b. The values of R z for 
which ~ goes to zero (a) are equal to the abscissas of the points of intersection of the solid 
curves with the line H2 -I in Fig, 2. 

The dependence of ~ on H 2 for R 2 = 1.5 and different values of k is shown in Fig. 5. It 
is evident that for harmonics which can lose stability (k = i, 2) ~ decreases with increasing 
H 2 and therefore an increase of the resistance of the surface (decrease of H2) can only lead 
to stabilization of the front. 

For small R I and large R 2 the boundary surfaces have only a weak effect on the flow near 
the front and in the limit R I ~ 0, R 2 ~ ~ (4.1) reduces to the trivial relation ~ = -i. In 
this case the increment ~ ceases to depend on the parameters RI, R2, Hi, and H2, characteriz- 
ing the properties of the boundary surfaces, and also on ~ and k, i.e. perturbations of all 
wavelengths damp out with the same rate. This result shows that in the case of a cylindrical 
front dispersion of the perturbations is caused by the boundary surfaces. 

We note that when k ~ 0 a harmonic perturbation does not change the total flux of react- 

ing material eih~d~ = 0 , and therefore the stability of the front to the perturbation does 

not depend on how material is supplied to the system. On the other hand, when k = 0 (one- 
dimensional perturbation) the stability of the front is determined by the nature of the 
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supply of material to the system (see Sec. 2). In particular, the case where the reacting 
material is supplied such that the pressure drop is constant corresponds formally to the use 
of (3.5) and (3.6) (in which pressure perturbations in the external region are neglected), 
therefore (2.9) in dimensionless form coincides with (4.1) with k = O. 
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